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SU(n) bundles over the configuration space of three 
identical particles moving on R3 

F J Bloore, I Bratley and J M Selig 
Department of Applied Mathematics and Theoretical Physics, The University, 
Liverpool L69 3BX, UK 

Received 14 June 1982, in final form 21 October 1982 

Abstract. We study the systems of three identical spinless particles moving on R 3  and 
possessing an SU(n) gauge symmetry. Three such systems are possible, corresponding to 
the three non-isomorphic SU(n) bundles over C3(R3), the configuration space. We retract 
C3(W3) to a subcomplex which shows clearly how its homology arises. The three bundles 
can be realised as pull-backs of the universal bundle S7 + S4 using three non-homotopic 
maps C3(R3)+S4. The two non-trivial bundles admit no flat connection; they do not 
correspond to Bose, Fermi or parastatistics. 

1. Introduction 

In the conventional naive quark model, baryons are bound states of three quarks, 
each with a wavefunction which takes values in the unitary space C3 on which the 
group SU(3) acts naturally. The strong interaction between the quarks is assumed to 
be SU(3) invariant so that the bound states form degenerate multiplets, singlet, octet 
or decuplet, carrying representations of SU(3). 

In gauge theory and in geometric quantisation theory, the state of a physical system 
whose configuration space is M and whose gauge group is G is represented by a ray 
in the Hilbert space of L z  sections of some complex Hermitian vector bundle E over 
M, associated to a principal bundle P(M, G )  over M. The isomorphism class of the 
principal bundle gives a superselection rule. 

Thus the wavefunction of the baryon is no longer a tensor product of three quark 
wavefunctions each mapping R3 to C3, but a section of a vector bundle with structure 
group SU(3) over the configuration space of three quarks. 

In geometric quantisation theory, the identity of identical particles may be given 
a geometrical significance. Souriau (1970) showed that for gauge group U(1), if one 
regards a configuration of m identical particles in R3 as the set { r l ,  . . . , r,} of the m 
distinct (unordered) positions of the particles, then exactly two principal U( 1) bundles 
exist over the space C,,,(W’) of these configurations. The trivial bundle corresponds 
to Bose statistics and the non-trivial bundle to Fermi statistics (see also Bloore 1980). 
Statistics are thus reduced to topology for the electromagnetic gauge group U(1), and 
there are no parastatistics. 

It is of some interest therefore to investigate what principal G- bundles exist over 
C,,,(R3), when G is not U(1) but say U(n) or SU(n), and to interpret these if possible 
in terms of statistics. We study here a simple case of three identical spin-zero particles 
moving on R3. We ignore spin to make it easier. We find there are three principal 
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SU(n) bundles over C3(R3) and that Bose and Fermi statistics both correspond to the 
trivial bundle. (Parastatistics requires a U(2)-bundle.) The two non-trivial bundle 
possess no flat connections; they correspond to a symmetry of the conventional 
wavefunction $(rl, r2,  r3)  defined on R9 which is different from statistics discussed to 
date. We hope to develop this further in a future paper. 

2. The configuration space C3(W3) 

The configuration space of three distinguishable particles on R3 is 

cr(R3) = (R3 x R 3  x R3)\A 

where A is the set of all confijurations in which two or more particles coincide and 
is excluded in order to make C3 a manifold (Bloore 1980). The manifold c3 is simply 
connected and has cohomology groups 

H*(c3, Z) = Z, 0 ,32 ,0 ,2Z  

calculated by a spectral sequence (Bloore 1980). The configuration space of three 
indistinguishable particles is 

C3(R3) = C3(R3)/S3 

where S3 is the permutation group on three elements. The spectral sequence corre- 
sponding to the covering of C3 by C3 provides the cohomology groups of C3, 

H*(C3, Z) = Z, O,Z2,0,  Z3; H4(C3,Z)=0 €or q >4. 

The technical detail of the calculation will be presented elsewhere; our purpose here 
is to give a descriptive account. 

If, as in this case, the top cohomology of a manifold M is of degree four then the 
isomorphism classes of principal SU(n) bundles over M are in (1, 1) correspondence 
with [M, S4] = H4(M, Z) (Avis and Isham 1979), and their structure group reduces to 
SU(2) (Isham 1981). Thus there are three non-isomorphic principal SU(n) bundles 
6 over C3, each determined by its second Chern class, c2(5) E H4(C3, Z) = Z3, and we 
need only treat SU(2) bundles. 

It follows from the universal coefficient theorem that the torsion parts of H3(C3, Z) 
and H4(C3, Z) are equal, so that 

H3(C3, Z) = Z3; Hq(C3,Zj=0 for q > 3. 

A generator D, of H3(C3, Z) is a closed 3-submanifold which does not itself bound a 
4-submanifold, W, but for which 3 0  = a W. It is useful to view C3 as the space of all 
triangles in R3 including colinear ones. We may then realise D as the 3-manifold of 
equilateral triangles of unit side and fixed centroid, 0 say, and W as the 4-manifold 
of isosceles triangles of unit base, centroid 0, and height h, 0 G h < J3 /2 .  

As h tends to J 3 / 2  the three isosceles triangles lying in the same plane and having 
bases at 60" to each other all approach the same equilateral triangle and so we need 
three copies of D to bound W (figure 1). 

If a manifold M can be strongly deformation-retracted to a subspace M '  then any 
bundle over M' can be extended to a bundle over M, unique up to isomorphism, of 
which it is the restriction. M and M'  will have the same cohomology. In the next 
section we give an explicit strong deformation retraction of C3 to the subcomplex 
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Figure 1. Three isosceles triangles approach the same equilateral triangle. 

actually a manifold), which therefore carries the topology of C3. In § 4 
the fact that the Hopf fibration S7+S4 is 4-universal (it is actually 

6-universal (Avis and Isham 1979) for SU(2)), to obtain the three SU(2) bundles over 
CJ as pull-backs of S7 + S4. 

3. The retraction of C3 to W U D 

The retraction has three steps. Regard C3 as the nine-dimensional set of all triangles 
in [ w ~ .  

(i) Translate the triangles without rotation until their centroids lie at the origin 0. 
This retracts C3 to a six-dimensional space. 

Figure 2. Translation of the triangles to a common centroid 0. 

(ii) Rescale (dilate) each triangle until its shortest side (or sides) has unit length. 
This further retracts C3 to a five-dimensional space. 

(iii) Finally, keeping the shortest side fixed in direction and the centroid fixed, 
move the vertex opposite the shortest side inward towards the midpoint of that side 
until the triangle becomes isosceles. 

In figure 3, the triangles whose shortest side, or whose shortest equal side is parallel 
to a given direction n are pictured as the triangles ABC where AB is of unit length 
and parallel to n. The points C lie outside or on the boundary of the union of two 
unit spheres centred on A and B. The two colinear triangles ABE and ABE’ in figure 

C F 
\ I 

Figure 3. Schematic diagram of step (iii) of the retraction. 
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3 represent the same triangle with centroid 0. Let M be the midpoint of AB. The 
retraction takes the scalene triangle ABC to the isosceles triangle ABC'. Colinear 
triangles retract to colinear triangles, 'tall' isosceles triangles ABF retract to equilateral 
triangles ABF.  During the retraction the shortest side of the triangle will move 
sideways, keeping the same direction, since the centroid is held at 0. This is not 
pictured in figure 3, which depicts the motion of the vertex relative to the base. 

4. Classification of SU(n) Bundles 

In this section we describe the three non-isomorphic SU(2) bundles over W U D as 
pull-backs of the Hopf fibration T :  S7+S4, which is a 6-universal principal SU(2) 
bundle. This means that if d i m M < 6 ,  every principal SU(2) bundle over M is the 
pull-back f * ( S 7 )  of some map f :  M + S4. If f l  and f 2  are homotopic maps then f T  (S7) 
and f z  (S7) are isomorphic bundles over M. As noted in 8 2, since W U D is a strong 
deformation retract of C, we need only consider bundles over W U D. We now 
construct three homotopically distinct maps from W U D to S4. 

Let I h  be the subset of W U D of all isosceles triangles of height h. Then 

W U D =  U I h  
0s h s >'3 / 2 

with I J 3 / 2  = D, the equilateral triangles, and Io  = R P 2 ,  the colinear triangles. For 
O<h < J 3 / 2  each I h  is a circle bundle over RP2. It is not a principal U(1) bundle 
because it does not carry a continuous U( 1) action on the fibres. I h  is also the quotient 
of the rotation group space R P 3  by the group 2 2  whose generator, y, acts by rotating 
the isosceles triangle about its axis of symmetry through an angle of 180". Hence I h  

has a four-fold covering by S 3  and the rotation, y,  regarded as a closed loop in I h  

generates the fundamental group Z4 of I,. Thus I h  = S 3 / Z 4  and by a theorem of Rice 
(Rice 1969) this space is unique and is the Lens space L ( 4 , l )  with cohomology 

H * ( I h ,  z) = 2, 0 ,  2 4 ,  2.. 
In a similar way we may regard S4 as the suspension of a 3-sphere, i.e. 

s4= U s:, 
O < h s 9 ' 3 / 2  

where s $ 3 / 2  and Si denote the north and south poles of S4 and for 0 < h < J3/2S; 
the 3-sphere of 'latitude' h. Now any continuous map f :  I h  + S i ,  for fixed h, extends 
to a continuous map f: W U D  +S4, sending D to & / 2  and Io to Si, as follows 
(figure 4). We have U O < h < > / 3 / 2  I h  = 1 ~ 1 2  x J and U o < h 5 J 3 / 2  S :  = GI2 x J where J is 
the open interval (0, J3/2). we put f =  f x id, and let ~ ( I J ~ , ~ )  = S 5 3 1 2  and f(Io) = Si, 
S O  we study homotopy classes of maps from I h  to s3. 

Figure 4. The mappings from W U D to S4. 



Since [ I h ,  S3] = H 3 ( 1 h ,  Z) (Avis and Isham 1979), the map f has a homotopy 
invariant k € H 3 ( I h ,  Z) = Z. We show that f is homotopically trivial if and only if 
k mod 3 = 0. We split W U D  into two subsubspaces 

Y =  U I h  
1 / 2 = ~ h  d 3 / 2  

x = U I h ,  
O s h s 1 / 2  

so that X U Y = W U D and X n Y = I 1 1 2 .  In the same way we divide S4 into northern 
(N) and southern ( S )  hemispheres, overlapping only at the equator S : / 2 .  The map f 
now induces commutative diagrams involving the Mayer-Vietoris cohomology sequen- 
ces of both spaces: 

H3(S4) -+ H3(N)OH3(S) - H3(S3) - H4(S4) - H4(N)OH4(S) .  . , 

H 3 ( W u D )  + H 3 ( X ) O H 3 ( Y )  + H 3 ( X n  Y) + H 4 ( W u D )  + H 4 ( X ) O H 4 ( Y ) .  . , 
where the cohomology groups have Z coefficients. Since X retracts to lo=[WP2, 
H3(X) = H4(X) = 0. H3( Y) is irrelevant, although exactness of the second line (or the 
fact that Y is retractible to D )  implies H 3 (  Y) = Z. The diagram becomes 

.1 .1 .1 f*  .1 f' .1 

id 
O+L- Z - 0  

where f* must be multiplication by some integer k. Even though there is a sign 
ambiguity in the mod 3 homomorphism, we see from commutativity that p is trivial 
if and only if k mod 3 = 0. If k mod 3 # 0 then we can obtain representatives of all 
three homotopy classes of maps p by composing f with a general map from S 3  to 
S 3  of appropriate degree. A suitable map F :  1 1 / 2 - * S : / 2  is obtained as follows. The 
Lens space L(4, 1) ( = I l l 2 )  has a cell decomposition consisting of the ball E 3  surrounded 
by a 2-sphere S 2  on which certain identifications are made (Hilton and Wylie 1962). 
S 3  is the ball E 3  whose boundary is all identified to a single point y .  Let f : E 3  + E 3  
be the identity map and let f ( S 2 / - )  = y. An argument similar to the one above shows 
that this f has k mod 3 # 0. 

- 53 

Figure 5. Example of a map f :  Ill2+ S;l2 which is not homotopically trivial. 

I ,  

5. Remarks 

Quantum mechanics in the two non-trivial bundles over C3 has no conventional 
analogue. Conventionally, a wavefunction of three identical particles is a vector valued 
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function 

lJ:e3-+ v 
taking values in some Hermitian complex vector space V, and is equivariant under 
permutations, 

lJ(b6i) =D(b)lJ(&) 

where 6 E S3 ,  6i E E3 and D is a representation of S3 on V. 
We may regard 6 as a section of the trivial bundle 

the action of S3 on e, to the bundle B. We may then form the vector bundle 
= e3 x V, and D as a lift of 

E = z/S3 = es x s,V 

over C3, by identifying points in E, (&, $(&)) = (b&, D(b)$(&)).  Let p : 6 3  + C3 be 
the covering projection. Then =p*E and the equivariant sections 4 are the 
pull-backs p*ll, of sections ll, of E. However, we now show that if E is associated 
with a principal SU(2) bundle, then that principal bundle is the trivial one. It follows 
from a theorem of Milnor (Milnor 1957) that a vector bundle over M with standard 
fibre V admits a flat connection if and only if it is of the form A ? X , ~ ~ V ,  where Id 
is the simply connected covering of M and the fundamental group 7rlM acts linearly 
on V. Thus the bundle E admits a flat connection. If E is to be an associated SU(2) 
bundle the holonomy of this flat connection gives a homomorphism D’ from S3 to 
SU(2). But only two such homomorphisms exist, the trivial and the alternating one; 
in both these cases the underlying principal SU(2) bundle c3 x ~ , ( ~ ~ )  SU(2) is the trivial 
one, Po. 

To show that 6 3  x ~ , ( ~ ~ )  SU(2) is trivial when D’ is the alternating representation 
it is enough to specify a globally defined section, or equivalently an antisymmetric 
map CY : e3 + ~ ( 2 ) .  

K(r1, rz, r3) = (r2 - r d  x (r3 - r d  = (r2 x r3) + (r3 x r l )  + (rl x r2) 

U r l ,  r2, r3) = (r2 - r3)[(r3 - r l )  (rl - 4 1  + (r3 - rd[ (r l  - r2) * (r2 - r3)I 

Consider the two antisymmetric maps c3 + R3, 

+ (rl - r2)[(r2 - r3) (r3 -rdI. 

The magnitude of K is twice the area of the triangle formed by r l ,  r2 and r3 and 
its direction is normal to the plane of the triangle in the sense of circulating the triangle 
from r l  to r2 to r3 .  The vector K vanishes only on the colinear triangles. 

The vector L lies in the plane of the triangle and vanishes only on equilateral 
triangles. So K L = 0 and K + L = M say is an antisymmetric vector-valued function 
of r l ,  rz and r3  which does not vanish on 6,. We may take CY to be 
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